Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line.
نویسندگان
چکیده
Polycomb group protein enhancer of zeste 2 (EZH2) is a master regulatory protein that plays a critical role in development as part of the polycomb repressive complex 2. Polycomb repressive complex 2 controls numerous cell cycle and regulatory genes through trimethylation of histone 3, which results in chromatin condensation and transcriptional silencing. EZH2 overexpression has been correlated with high incidence of more aggressive, metastatic prostate cancers. Although this correlation means EZH2 could prove valuable as a biomarker in clinical settings, the question remains whether EZH2 is actually responsible for the initiation of these more aggressive tumor types. In this study, EZH2-mediated neoplastic transformation of the normal prostate epithelial cell line benign prostate hyperplasia 1 (BPH1) was confirmed by in vivo tumor growth and in vitro colony formation. Furthermore, EZH2 transformation resulted in increased invasive behavior of BPH1 cells, indicating that EZH2 may be responsible for aggressive behavior in prostate cancers. BPH1 was also transformed with the classic oncogenes myristoylated Akt and activated Ras(V12) to allow phenotype comparisons with the EZH2-transformed cells. This study marks the first demonstration of neoplastic transformation in prostate cells mediated by EZH2 and establishes that EZH2 possesses stronger transforming activity than Akt but weaker activity than activated Ras.
منابع مشابه
Epigenetic Regulation of the Epithelial to Mesenchymal Transition in Lung Cancer
Lung cancer is the leading cause of cancer deaths worldwide. It is an aggressive and devastating cancer because of metastasis triggered by enhanced migration and invasion, and resistance to cytotoxic chemotherapy. The epithelial to mesenchymal transition (EMT) is a fundamental developmental process that is reactivated in wound healing and a variety of diseases including cancer where it promotes...
متن کاملEnhancer of Zeste 2 as a marker of preneoplastic progression in the breast.
Amplification of the Polycomb group transcriptional repressor Enhancer of Zeste 2 (EZH2) occurs in various malignancies including breast cancer, where its overexpression is associated with poor outcome. We found that EZH2 is up-regulated in ductal carcinoma in situ, atypical ductal hyperplasia, and even morphologically normal breast epithelial cells from women who have an increased risk of brea...
متن کاملExpression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer.
The polycomb group protein enhancer of zeste homologue 2 (EZH2) has been linked to invasive properties of aggressive breast cancer. In this report, tissue microarray analysis of 190 breast carcinomas from a nested case-control study shows that EZH2 is significantly associated with interval breast cancers. Further, a strong relationship was found with tumor cell proliferation (by Ki-67 expressio...
متن کاملCell Cycle, Cell Death, and Senescence Enhancer of Zeste Homolog 2 Promotes the Proliferation and Invasion of Epithelial Ovarian Cancer Cells
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that includes noncatalytic subunits suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). When present in PRC2, EZH2 catalyzes trimethylation on lysine 27 residue of histone H3 (H3K27Me3), resulting in epigenetic silencing of gene expression. Here, we investigated the expre...
متن کاملEnhancer of zeste homolog 2 promotes the proliferation and invasion of epithelial ovarian cancer cells.
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that includes noncatalytic subunits suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). When present in PRC2, EZH2 catalyzes trimethylation on lysine 27 residue of histone H3 (H3K27Me3), resulting in epigenetic silencing of gene expression. Here, we investigated the expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2009